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Abstract--Numerical simulations of the columnar dendritic solidification of a Pb-20 wt% Sn alloy in a 
square cavity cooled from one side and fed by a rectangular riser are reported. Overall macrosegregation 
patterns predicted using Scheil and lever-rule type microsegregation models are found to be similar, 
although the predicted eutectic fraction is significantly higher with the Scheil-type model. The choice of 
mushy zone permeability function significantly affects the predicted number, length and orientation of 
segregated channels. The inclusion of shrinkage-driven flow leads to the prediction of the well-known 
inverse mncrosegregation pattern. However, macrosegregation caused by thermosolutal convection readily 
masks the inverse segregation. The microsegregation models predict different solid concentrations and 
eutectic fractions, leading to different solid density distributions which, in turn, cause differences in the 

extent of contraction-driven flow. 

1. INTRODUCTION 

In recent years, much time and effort has been 
expended trying to develop accurate models, as well 
as efficient numerical algorithms to solve the model 
equations, for studying the transport phenomena that 
occur during alloy solidification. The aim of these 
studies is to develop predictive capabilities that allow 
for the design of defect-free castings. Numerical solu- 
tion of the conservation equations in macroscopic 
alloy solidification models has shown the capability of 
such models to wedict the development of an irregular 
liquidus front, local remelting of solid, channels in 
the mushy zone and complicated macrosegregation 
patterns, for the solidification of salt-water solutions 
[1-3] as well as metal alloys [5-7]. 

In applying alloy solidification models, several 
assumptions are typically introduced to simplify the 
solution of the conservation equations. They include : 
thermal equilibrium, a well-mixed liquid, and com- 
plete (i.e. infinitely fast) species diffusion in the solid 
within a small volume element; an isotropic per- 
meability in the mushy zone ; and constant and equal 
phase densities (i.e. neglecting contraction-driven 
flow) with the Boussinesq approximation used to 
model buoyancy-driven flow. In order better to evalu- 
ate and understand macroscopic solidification models, 
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the effects of these assumptions on the resulting model 
predictions need to be investigated. Towards that 
goal, the objective of this study is threefold. First, a 
comparison is made between macrosegregation and 
eutectic volume fraction patterns predicted when there 
is assumed to be either complete or no solute diffusion 
microscopically in the solid. A comparison is also 
made between predictions obtained when using 
different mushy zone permeability relations, with the 
focus on the necessity of considering the anisotropy 
of the permeability and of accurately specifying the 
permeability at high liquid fractions. Finally, the com- 
bined effects of flow due to buoyancy and volume 
contraction (caused by solid/liquid density differences 
as well as density variations with temperature and 
concentration) are investigated. The model pre- 
dictions used in all of the comparisons are for the 
columnar dendritic solidification of a Pb-20 wt% Sn 
alloy in a square cavity cooled from one side and fed 
by a rectangular riser. 

The assumption of infinitely fast solute diffusion in 
the solid on a microscopic scale (i.e. a lever-rule type 
model) can be considered as one limiting case describ- 
ing solid microsegregation. Then, a second limiting 
case is described by assuming no microscopic solute 
diffusion in the solid (i.e. a Scheil-type model). Several 
studies have employed a Scheil-type model in cal- 
culating macrosegregation during alloy solidification 
[3, 5, 8, 9]. In the only study that directly compared 
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NOMENCLATURE 

a lattice parameter [m] 
C concentration [wt% Sn] 
d dendrite arm spacing [m] 
D mass diffusivity [m 2 s-J] 
g liquidus curve equation 
g acceleration of gravity [m s 2] 
h enthalpy [J kg z] 
k thermal conductivity [W m-~ K 1] 
K (2) second-order permeability tensor [m 2] 
K permeability [m 2] 
l length scale [m] 
m~ liquidus curve slope [K wt% Sn) 
p pressure [N m 2] 
S interfacial area concentration [m-~] 
t time [s] 
tf local solidification time [s] 
T temperature [K] 
U heat transfer coefficient [W m 2 K -  ~] 
v velocity vector [m s -1] 
x x direction [m] 
y y direction [m]. 

Greek symbols 
F Gibbs-Thomson coefficient [inK] 
e volume fraction 
~c segregation coefficient [wt%/wt%] 

# kinematic viscosity [kg m -  ~ s-~] 
p density [kg m 3] 
tp a quantity of a phase 
( ~ k )  ~ volume average of • in phase k. 

Subscripts 
e eutectic 
i interfacial 
j species transfer 
k phase k 
1 liquid 
mix mixture 
o initial, constant 
s solid 

alpha phase 
7 gamma phase 
q normal to dendrite 

perpendicular to dendrite 
1 primary dendrite arm 
2 secondary dendrite arm. 

Superscripts 
Pb pure lead 
Sn pure tin 
t transpose of a tensor 

interfacial average. 

macrosegregation patterns [3], it was determined that 
the general behavior for the two limiting cases was 
qualitatively similar, with the predicted macro- 
segregation for the case of no solute diffusion slightly 
worse than that for complete solute diffusion. For  
diffusion-dominated solidification, the movement of 
the liquidus isotherm was shown to differ only slightly 
[10, 11], while the final volume fraction of eutectic 
was quite different for the two cases [11]. In the model 
used here, the conservation equations are written in 
a general form that easily accommodates both the 
assumptions of infinitely fast and no solute diffusion 
in the solid microscopically. In addition, the eutectic 
reaction is considered in detail, which is important 
since in Pb-Sn alloys the primary and eutectic solid 
specific heats differ by 27% and their densities differ 
by 17% [12, 13]. Very recently, Sundarraj and Voller 
[14] coupled the numerical solution of mass diffusion 
equations for the solid and liquid phases on a micro- 
scopic scale (including finite rate diffusion in the solid 
and dendrite arm coarsening) with one-dimensional 
calculations of the macrosegregation which results 
from contraction-driven flow. The predictions of this 
sophisticated model showed that the eutectic fraction 
decreased with increasing back diffusion in the solid, 
and that this influenced the predicted macro- 
segregation profile. 

Since the permeability of the mushy zone has a 
significant effect on interdendritic fluid flow, and 

therefore on the transport of heat and mass on the 
macroscopic level, it must be accurately described in 
a solidification simulation. However, the uncertainty 
in experimentally measured permeabilities is large, 
and such measurements are practical only for a limited 
range of liquid fractions (between 0.15 and 0.65) [15]. 
Nevertheless, it has been shown that the directional 
nature of the columnar dendrites in the mushy zone 
causes the permeability to be anisotropic [15], and 
neglecting the anisotropy in solidification simulations 
can have an effect on the convective flow during solidi- 
fication [16, 17] which leads to significant differences 
in the prediction of the growth of double diffusive 
layers, remelting of solid and macrosegregation [17]. 
In this study a comparison is made of the flow and 
macrosegregation patterns that are predicted when 
using two permeability expressions that are available 
in the literature. 

Including contraction-driven flow, in addition to 
buoyancy driven flow, in solidification simulations has 
also received attention recently. Chiang and Tsai [18] 
investigated the interaction of buoyancy and shrink- 
age driven flow during the solidification of a 1% Cr- 
steel, but did not consider species transport. Tsai and 
co-workers [19-21] obtained good agreement between 
predicted and measured inverse segregation profiles 
for unidirectional solidification of an AI-Cu alloy, 
where flow was due to contraction only. Sundarraj 
and Voller [14] showed that such comparisons can be 
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Fig. 1. Schematic illustrations of: (a) the domain and boundary conditions used in the solidification 
simulatiens, (b) a typical averaging volume, and the microscopic temperature and concentration profiles 

for (e) infinitely fast microscopic solid solute diffusion and (d) no microscopic solid solute diffusion. 

aid 

ambiguous if microsegregation, coarsening and eutec- 
tic formation are not rigorously accounted for. Xu 
and co-workers [8, 22, 23] solved the complete set 
of conservation equations with both buoyancy- and 
contraction-driven flow for the solidification of an A1- 
Cu alloy. Although the computational grid used in 
the simulations was too coarse to capture double- 
diffusive layering and local remelting of solid, reason- 
able agreement with experimental results was 
obtained. Krane and Incropera [24] examined the 
combined effecl:s of shrinkage- and buoyancy-driven 
flow on macrosegregation formation during the solidi- 
fication of a Pb-19.2 wt% Sn alloy, and determined 
that shrinkage .effects become increasingly important 
with increasing cooling rates. However, because a 
lever-rule type microsegregation model was used, little 
or no eutectic solid was predicted to form. The results 
presented in thi:~ study include the effects of flow due to 
both buoyancy and solidification shrinkage, coupled 
with two limiting microsegregation cases that predict 
different eutect:[c fractions. 

2. MODEL DESCRIPTION 

As illustrated in Fig. 1, the physical situation under 
consideration is the solidification of a Pb-Sn alloy in 
a two-dimensional 5 cm by 5 cm cavity with an 
attached 1 cm wide by 4 cm high riser. All the walls 

of the cavity, as well as the free surface at the top of 
the riser, are impermeable. The cavity is convectively 
cooled at the left wall with an overall heat transfer 
coefficient of 75 W m -2 K -~ and an ambient tem- 
perature of 293 K, while the remaining walls and the 
free surface are adiabatic. Surface tension effects at 
the free surface in the riser are neglected, and a no- 
slip boundary condition is applied at all of the walls. 
The alloy is initially quiescent with a uniform com- 
position of Pb-20 wt% Sn and a uniform temperature 
of 576 K (25 K of superheat). Thermophysical proper- 
ties for the Pb-Sn system are summarized in Table 1. 

The model described here is, in essence, a gen- 
eralization of the model used by Beckermann and 
Viskanta [2], and can be directly obtained from the 
volume-averaged two-phase model of alloy solidi- 
fication presented by Ni and Beckermann [25]. A 
detailed description of the derivation of the model 
equations is available elsewhere [26-28] so that only 
a brief discussion is included here. There are assumed 
to be at most three phases present: liquid (denoted by 
a subscript l), alpha-solid (subscript ~) and gamma- 
solid (subscript 7). Alternatively, one could consider 
liquid, primary (~- or 7-) solid and eutectic solid. The 
primary solids are considered separately here because 
the eutectic solid is, in reality, made up of ~- and 7- 
solid, and because this approach is more general than 
calculating a single eutectic solid fraction. In all the 



Table 1. Phase diagram relations, thermophysical properties, mushy  zone permeabilities and dendrite arm spacing relations 
for the Pb-Sn  system 

Liquidus curve (K) [13] 

~600.8 --2.8290C1+2.5088x 10 2C ~-2 .7597×  10-4C 3 for Cl ~< 61.9 

T= ~.229.4+7.7091C~-0.091235C2+4.1752× 1 0 - 4 C  3 for C~ > 61.9 

Segregation coefficients (wt% Sn/wt% Sn) [13] 
x~ = 0.8273 -4 .2208  × 10-2C~ + 1.9680 × 10 3 C 2 __ 5.1866 × 10-SCt 3 + 6.8075 x 10 7C4 + 3.4568 × 10 9C~ ; 

x r = 8 5 . 8 3 / C ~ + 0 . 3 3 8 7 8 - 4 . 4 8 5 8 × 1 0  3C~+2.0146x10 5C2 

Phase enthalpies (J/kg) [12] 

h~ = [0.079393C~ + 156.81]T- 7.452 x 10 5 ( 1 0 0 -  C~) T 2 - 25490C~T - j  + 228.122C~ + 53769C~(100- C~)/(11869+ 88.51(71) 

- 978.2C~(100- C0(325.89C~ - 11869)/(11869+88.516"1) 2 -27747 .9 ;  

h~ = [113.678 +0.682376C~] T +  [2.3507 × 10 2 + 5.2996 x 10 -5 6"=] T 2 +214.25C~ + 4 7 5 9 0 C , ( 1 0 0 -  C~)/(11869 + 88.51C,) 

-22930C~(100-C~)(325.89C~- 11869)/(11869 + 88.51C~) ~ --36028; 

h.¢ = [113.678 + 0.682376C~] T +  [2.3507 × 10-~ + 5.2996 × 10 -~ C~] T ~ - 273.6C~ 

+ 196930C~(100-C~)/(11869+88.51C~)-33670 

Phase densities (kg m 3) [13] 

p~ = {(1.9095 x 10~6+3.3211 × 10~4C1+9.014 × 101~C~ +4.0665 x 109C 3) 

- (2.1363 x 10 ~ ~ + 3.9986 x 101 o C~ - 1.6899 x 108 C~ + 1.8477 × 106 C 3 ) T}/(88.516"1 + 11869) 3 ; 

2.9328 × 10-9C~. 
p ~ = 1 . 6 3 3 4 × 1 0  2°/(88.51C~+11869)a~ 3 where a ~ = 4 . 8 9 1 0 × 1 0 - ~ ° + 1 . 9 6 2 5 × 1 0  14T-- 

88.51C~ + 11869' 

1.1305 × 10 -8 1.6795 x 10-s(100 - C.~) 
p~.=2.9940×10 ~°/(88.51C.~+11869)a~3 where a~.-  

(6.724× 10 5T~+O.1270T+7262) 1!3 -- 88.51C~+11869 

Phase thermal conductivities (W m ~ K ~) [5, 38] 

C~ s. 1 O 0  - -  C I k p  b 
ln(kl) = l~61n(k~ ) + ~ 6 - 6 ~ 1 n (  ~ ) 

C s  s 1 0 0  - -  C s Pb 
ln(k  0 = l ~ l n ( k ~ " ) +  ~ l n ( k s  ) 

where In (kl sn) = 0.85337 +0.4109 In (T) 

and In (k Pb) = -2 .0725+0 .7521  In (T) ; 

where In (k sn) = 4.5422 - 0.1708 In (T) 

and In (k Pb) = 3.7507 - 0.1708 In (T) 

and Cs = (e~p~C~+e~p~C~.)/(e~p~+e~.p~) 

Liquid mass  diffusivity (m 2 s - 1 )  [40] 

D i  = 3 . 0  x 10 -9 

Viscosity (kg m -  ~ s -  ~) [39] 

p, = (118.69C~# s" + 207.2C~,u~b)/(88.51C~ + 11869) 

where psn = 2.75 × 10-5(pSn) b'3 exp {O.0885pSn/T} 

and #~b = 2.54 X 10-5(p~b) ~/3 exp {O.0863pr~b/T} 

Permeability parallel to primary dendrite arms (m 2) [5, 15, 32] 

I[4.53x10 - 4 + 4 . 0 2 x 1 0  6(e ,+0 .1)5]  ~ for e , < 0 . 7  
K~ = ( - ,) 

L0 .07425d~[ - ln  (1 - ~ ) -  1A87+2(1 - e 0 - 0 . 5 ( l  - e , )  z] for ej ~> 0.7 

Permeability perpendicular to primary dendrite arms (m z) [5, 15, 33] 

cF /d  \l.09q d283 
[ | 1 . 7 3 × 1 0  3 1 " ' i  l -2°, 

/¢~. = ~ L  \ 4 ]  ~ ( l - ~ l )  0.749 
! 
L 0.03979d~[- In (1 -e~) - 1.476+2(1 - eO  - 1.774(1 -e~) 2 +4.076(1 _ e~) 3] 

Isotropic permeability (m 2) [6] 

giso t rop ic=Kee=K,m~-Ko- -  where K 0 = 2 . 8 × 1 0 - 1 1 m  2 
(1 --el): 

Primary dendrite arm spacings (m) [41, 42] 

d, = 325.1 × lO-6C°°'2s[_\Sx] + \8y]  ] \OtJ 

for et < 0.7 

for e~ t> 0.7 

Secondary dendrite arm spacings (m) [43] 

dz (tr) = (d2 (0) 3 (' FD~ \~/3 
+ Jo m,(r~-l  )C, dt) 

where ml = slope of the liquidus curve 

and F =  1 . 0 x l 0 - 7 j m  2 
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model equations, (Wk) k indicates the intrinsic volume 
average of a quantity W of phase k, and ~ki indicates 
an average of a quantity W of phase k over the inter- 
facial area of phase k in the averaging volume. 

A number of assumptions are made to simplify the 
governing equations, including: (i) the solid phases 
are stationary and rigid so that (v,)  ~ = (v~) r = 0 ; (ii) 
all of the phases within an averaging volume are in 
thermal equilibrium, i.e. (T , )  ~ = (T~.)~ = (T~) ~ = T; 
(iii) the liquid within an averaging volume is well 
mixed so that the. interfacial average and volume aver- 
age concentrations are equal, i.e. (Cj)~= C~; (iv) 
microscopic species diffusion in the solid phases is 
described by one of two limiting cases : (a) complete 
diffusion, where the interfacial average and volume 
average concenlxations are equal, i.e. (7~ = (C,)  s 
(where s = ~ or 7) or (b) no diffusion, where there is a 
microscopic solute profile in the solid, i.e. (Ts~ ~ (Cs) ~ 
(where s = ~ or ?) ; (v) finite-rate macroscopic liquid 
species diffusion is included, while all macroscopic 
solid species fluxes are negligible, and all macroscopic 
species gradients appearing in the mixture energy 
equation are neglected; (vi) thermodynamic equi- 
librium exists at the solid-liquid interfaces so that 
the interfacial temperature and concentrations can be 
related through the phase diagram, i.e. T = 9((C~) ~) 
and C~i/(Cl)l= x~((Clf) where g is an equation 
describing the liquidus curve, and x, is the equation 
for the segregation coefficient of solid phase s (where 
s = ~ or 7) ; (vii) gravity is the only body force present, 
and the dissipative interfacial stress for flow through 
the porous matrix of columnar dendrites is modeled 
using the mushy zone permeability in analogy with 
Darcy's law. Assumptions (ii) through (iv) are illus- 
trated in Fig. 1, and the macroscopic conservation 
equations are summarized in Table 2. Note that no 
assumption has been made about the phase densities 
being constant and/or equal so that the model is cap- 
able of predicting melt flow resulting from the volume 
contraction, or shrinkage, that accompanies solid/ 
liquid phase change, as well as flow resulting from 
volume variations because of the dependence of the 
solid and liquid, densities on temperature and con- 
centration. The riser attached to the casting (shown 
in Fig. 1) is used to feed these volume changes, with 
the method used to handle the movement of the free 
surface in the riser in the simulations discussed in 
Section 3. 

2.1. Microscopic solid species diffusion and remelting 
The solid species conservation equation in Table 2 

indicates that the rate of change of the volume average 
solid concentration is balanced by the interfacial 
transfer of species at the solid/liquid interface. The 
interfacial species transfer rate consists of two parts : 
the first due to ,~olidification (change in solid volume 
fraction) and the second due to species diffusion in 
the solid at the interface. The interfacial transfer rate 
due to diffusion is proportional to its driving force 
(the difference between the interfacial average and 

volume average concentrations) as well as the inter- 
facial area concentration (S,), and inversely pro- 
portional to a solute diffusion length (l~) which 
characterizes the resistance to diffusion. If tf denotes 
the local solidification time, the quantity Ss(DJl~)tf is 
a dimensionless diffusion time (Fourier number) [29], 
and two limiting cases of microscopic solid species 
diffusion can be considered [30] : 

or  

O s 
Ss---tf >> 1 s = c~,7 (1) 

Os 
Ss--:-tr << 1 s = c¢, 7. (2) 

Equation (1) implies that the time required for species 
diffusion in the solid on a microscopic scale is short 
in comparison with the local solidification time. Then, 
an order of magnitude analysis of the solid species 
conservation equation in Table 2 reveals that the volume 
average solid concentration will be equal to the aver- 
age interfacial solid concentration, i.e. the solid phases 
will be solutally well mixed and assumption (iv)(a) 
will be satisfied. In the absence of macroscopic advec- 
tion or diffusion of solute, this case reduces to the 
lever rule, and can be referred to as a lever-rule type 
model. Conversely, equation (2) means that the time 
required for microscopic species diffusion in the solid 
is much longer than the local solidification time. This 
results in the presence of a microscopic concentration 
profile within the solid in an averaging volume as 
noted by assumption (iv)(b), and corresponds to 
a Scheil-type model. In solving the model equations 
it is easy to switch between these limiting micro- 
segregation cases simply by setting SspsD~/l~ to a suit- 
ably large number or to zero, and one objective of the 
present work is to investigate further the differences 
in macroscopic model predictions using these two 
limiting cases to describe solid microsegregation. 

During the solidification process, there is the possi- 
bility of local remelting of some of the solid that has 
formed. Since the solid is assumed to be solutally well 
mixed on a microscopic scale when using equation 
(1), this presents no difficulty. When using equation 
(2), however, the presence of a microscopic con- 
centration profile in the solid creates problems during 
remelting [5, 31]. Since thermodynamic equilibrium 
exists at the solid/liquid interface during remelting, 
the interfacial solid concentration will have the com- 
position xs(C~) ~ (where s = ct or 7). After remelting, 
this interfacial solid concentration may not be equal 
to the composition of the solid near the interface 
because of the presence of the previously established 
concentration profile in the solid. The result is a dis- 
continuity in the solid concentration near the interface 
[31]. In reality there will be some finite rate diffusion 
in the solid which would smooth out this disconti- 
nuity, but a Scheil-type microsegregation model can- 
not account for solute diffusion. In order to avoid 
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Table 2. Summary of the macroscopic conservation equations 

Mixture mass conservation 

(glP,) q- V" (81p I <v I >1) = -- ~ (~:up~) -- ~ (~}PT) 

Liquid species conservation 

a < c , > '  , a < c ~ >  ~ 
e,p] ~ t  +e'P]<V'>~" V<Ct>] = V" (elplD, V<C]> -e:p~ ~ -  - e ~ p > -  

Solid species conservation (s = c~, 7) 

Mixture energy conservation 

& 
a a 

+ [<C, > - <C& =] g/(e~p,) + [<C, > ' -  <C,. >1 ~ (e,.P.,.) 

~p~ ~(<  C~> ~) = [C~- < c~> ] ~ (~ps) + s, ~ I  

~<h,)' OT ~<h~> ~ . , ~ ( O<hT> r] "~c3T 

a<h>' I a<c>' a<&> °/ a<c~> ~ a<h~>~' a<c~>~' a<h,>' f a<c,>' a<c~> ~ a<c~>, 
>, >7 

- [<C, )1_ <C~)~] Ot ~ (e~p~) -[<Cl)'-<Cr)qfft(erp.))+[<h,)'-<h~)~]~t(~p~)+[<h])O , -<h'~')']~tt(e;'P') 

Liquid momentum conservation 

a<v l>  ~ . . 
e,pl Ot +elpl<v~)"V<vl)' = - - 8 1 V < p l >  I +V" (~I]21V<v,> I) 

+ v • {~,u,[V<v,>l]' + ~,[<v,>'ve, + W,<v,>q} 

+ < v ~ >  ( ~ ( ~ p ~ ) +  ~ / ~ ~ ~ ' t ~t(er&)]-e~/~lK ~ ) <v~> +e~plg 

these difficulties, a simple model of remelting that 
conserves solute is adopted where the average solid 
concentration is assumed to remain constant  during 
remelting, i.e. 

<C~) ~ = constant  during remelting s = c~,7. (3) 

Similar to the lever-rule type microsegregation model, 
this is analogous to having a microscopically well 
mixed solid during remelting with the Scheil-type 
model. Obviously, this approach does not  require the 
recording of the microscopic solid concentration pro- 
file at each node point, as would be necessary in more 
complicated models of remelting [5, 31]. The present 
method of handling remelting with the Scheil-type 
microsegregation model cannot  be considered to be 
realistic, and much future work is required to develop 
a more accurate method. However, its effects on the 
predictions presented here are believed to be small. 

2.2. Mushy zone permeability 
The permeability along, K¢¢, and perpendicular to, 

K,,, the primary arms in the columnar  dendritic mush 
are not  equal, and K¢¢ and K,, will be functions of the 
primary and secondary dendrite arm spacings, as well 
as the liquid volume fraction [15]. The dendrites are 

assumed to grow opposite the flow of heat so the angle 
between the primary arms and the coordinate axes 
can be determined from the temperature gradient. The 
functions for K¢¢ and K~ given in Table 1 are those 
used by Felicelli et al. [5], but  include a dependence 
on the dendrite arm spacings. These permeabilities are 
based on experimental measurements for low liquid 
fractions [15] (e~ < 0.7) and are based on analytical 
solutions for flow through arrays of cylinders for high 
liquid fractions [32, 33]. Also listed in Table 1 is an 
isotropic permeability relation, based on the Blake- 
Kozeny model, that has been used extensively in 
solidification simulations, with the constant  K0 repre- 
sentative for the Pb-Sn  alloys studied in this paper 
[6]. It is important  to realize that this isotropic per- 
meability is not the geometric mean of the anisotropic 
permeabilities, as used by Yoo and Viskanta [17], and 
that variations with the dendrite arm spacings are 
neglected. 

Figure 2 shows the variation of K~ and K~, as well 
as the isotropic permeability, with liquid fraction. The 
first observation that can be made is that the aniso- 
tropic permeabilities jump by nearly a factor of 100 
at the transition point (el = 0.7) between the exper- 
imental and analytical permeability expressions. 
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Fig. 2. Variation with liquid fraction of the permeabilities perpendicular, K,n, and parallel, Ke~, to the 
primary dendrite arms, and of the approximate isotropic permeability. Also shown is the variation of the 
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Although this jump is obviously physically unrealistic, 
the development of a procedure for obtaining a 
smoother, physically realistic transition is beyond the 
scope of this study. Rather, the effects of this jump 
on the prediction of flow in the mushy zone will be 
illustrated in Section 4. Figure 2 also indicates that 
the permeability parallel to the primary arms is always 
larger than that perpendicular to the arms, although 
the two permeabilities only differ by a factor of around 
2 over a large range of liquid fractions. However, Yoo 
and Viskanta [17] have shown that even such small 
differences in the permeabilities can have a significant 
effect on the prediction of flow structures and macro- 
segregation. Fin~Llly, Fig. 2 shows that the isotropic 
permeability is bracketed fairly well by the anisotropic 
permeabilities. The largest difference between the iso- 
tropic and anisotropic permeabilities is at high liquid 
fractions, where, the analytical anisotropic per- 
meabilities are used. Since the initiation of the for- 
mation of channels in the mushy zone occurs in 
regions where the liquid fraction is high, these differ- 
ences can be significant. 

3. N U M I E R I C A L  I M P L E M E N T A T I O N  

The conservation equations presented in the 
previous section are equally valid in the fully solid, 
mushy and bulk liquid regions and can be solved 

using a fixed-grid, single-domain numerical solution 
procedure. Therefore, it is not necessary to track the 
liquid/mush or solid/mush interfaces, or to specify 
boundary conditions at these interfaces [1-3]. For the 
results in the following section, an implicit, control- 
volume-based finite-difference scheme has been used 
to discretize the conservation equations, and a power- 
law scheme used to evaluate the finite-difference 
coefficients. The velocity-pressure coupling in the 
momentum equations was handled using the SIMP- 
LER algorithm [34]. 

The coupling of the energy and species conservation 
equations in the mushy zone through the phase diagram 
provides a method for calculating the solid volume 
fractions [35]. Briefly, the procedure to calculate e~ or 
e l, before the eutectic point is reached is (with a detailed 
description found in Schneider and Beckermann 
[28]): (i) the temperatures and concentrations are 
assumed known, and the discretized form of the 
energy equation is solved for e~ or er; (ii) the species 
conservation equations are solved for the average con- 
centrations; (iii) the temperature for each location 
in the mushy zone is updated based on the liquidus 
temperature calculated using the average liquid con- 
centration at that node. This procedure is repeated 
within each time step until convergence of the tem- 
perature, concentration and volume fraction fields is 
achieved. Once the eutectic point is reached, both the 
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ct- and 7-solids form simultaneously while the tem- 
perature and concentrations remain fixed at the values 
given by the phase diagram. Then, the total (e, + e./) 
solid fraction is calculated from the energy equation, 
and the ct- and 7-solid fractions calculated from the 
liquid species conservation equation. 

To account for the movement of the free surface in 
the riser, the height of the upper-most control volumes 
in the domain, i.e. those at the top of the riser in Fig. 
1, was changed at each time step to assure global 
mass conservation. One can imagine this process as 
approximating the regression of the liquid surface 
down the riser. To be completely rigorous, the move- 
ment of the control volume faces should be accounted 
for in the discretization of the conservation equations. 
For simplicity that has not been done, but in the 
simulations presented here the volume change during 
any one time step was less than 0.005% so that this 
procedure is not expected to have a significant effect 
on the model predictions. In addition, to satisfy the 
assumption of no solid movement the solid densities 
were not allowed to vary in those control volumes 
that were completely solid. 

Effort has been made to assure that the model and 
solution procedure are sound. Comparison of pre- 
dictions of the model for diffusion-dominated (i.e. no 
fluid flow) solidification with the Neumann solution 
for isothermal phase change and with a semi-analytic 
solution for alloy solidification [36] showed good 
agreement. In addition, agreement was obtained 
between predictions of inverse segregation using the 
present model and results presented by Diao and Tsai 
[20]. Global conservation of mass and species was 
checked after each time step to assure there was no 
net loss or gain of these quantities in the domain. 
Finally, the computations were performed on a 50 by 
65 grid that was biased near the walls, using a time 
step of 0.1 s. Based on previous experience with similar 
simulations, this grid and time step are fine enough to 
capture all of the fundamental transport phenomena 
while allowing for reasonable computational costs. 
Calculations have been successfully performed separ- 
ately on Apollo DN10000, HP 715/50 and IBM 3090 
computers. When using constant properties and a 
linear phase diagram, 1 s of simulation time required 
approximately 220 s of CPU time on an HP 715/50 
workstation. For the variable properties and non- 
linear phase diagram used here, computational times 
were considerably longer. 

4. RESULTS AND DISCUSSION 

The results of four different simulations are 
described : 

• Case S1 (Scheil 1) assumes that there is no micro- 
scopic solid solute diffusion, i.e. equation (2) 
holds, and includes both buoyancy and con- 
traction-driven flow. 

• Case $2 (Scheil 2) is the same as Case S1, but the 

isotropic permeability function in Table 1 is used 
rather than the anisotropic permeabilities. 

• Case $3 (Scheil 3) is the same as Case SI, but 
includes only contraction-driven flow. 

• Case L1 (lever-rule 1) assumes complete micro- 
scopic solid solute diffusion, i.e. equation (1) 
holds, and includes both buoyancy and con- 
traction-driven flow. 

Detailed results from Case S1 will be presented, with 
results from Cases $2, $3 and L1 presented in parallel 
with those from Case S1 at appropriate points to 
facilitate comparison between the predictions. In the 
vector plots used to illustrate the simulation results, 
the velocity vectors represent (v~) ~, the actual liquid 
velocity. Total solid volume fraction isopleths 
(e~ = e~ + ~,) are superimposed on the vector plots in 
10% increments, with the location of the liquidus and 
solidus/eutectic fronts shown in bold. The shaded 
macrosegregation plots are of the mixture concen- 
tration, i.e. Cmi x : (Elpl(  C I)[ "~- e=p~( C=)~ + t~,p~,(C~.)')/ 
(e~p~ + e,p= + eTp:, ). Finally, the shaded eutectic fraction 
plots are of the sum of the ~- and 7-solid fractions 
formed during the eutectic reaction (eo). 

4.1. Early stages of solidification 
Cooling at the left wall induces thermal buoyancy 

forces that establish a counter-clockwise natural con- 
vection cell in the melt for Cases S1, $2 and L1. In 
these cases, the first solid forms at the bottom of the 
cooled wall after about 80 s while in Case $3 the first 
solid forms after about 35 s. As time progresses, the 
mushy zone grows upward along the cooled wall and 
into the melt. After 150 s of cooling the mushy zone 
occupies approximately one-third of the cavity, and 
there are no completely solid regions. Figure 3 shows 
isotherms and liquid concentration isopleths for Case 
S1 after 150, 250 and 400 s of cooling. The formation 
of solid is accompanied by the enrichment of the inter- 
dendritic liquid with Sn, and since the density of Sn is 
smaller than that of Pb, this enrichment induces solu- 
tal buoyancy forces that oppose the thermal buoyancy 
forces driven by the temperature gradients shown in 
Fig. 3(a). The density of the solute enriched liquid is 
significantly less than the density of the liquid of initial 
composition, and, therefore, solutal buoyancy forces 
dominate in the mushy zone. The flow driven by these 
buoyancy forces carries the enriched liquid to the top 
of the cavity and into the bottom of the riser, as shown 
in Fig. 3(d). The enriched liquid is prevented from 
moving farther up the riser by convective flow in the 
riser which is due to both thermal buoyancy and feed- 
ing of the volume contraction. 

Velocity and macrosegregation plots for Cases S1, 
$2 and LI after 250 s of cooling are shown in Fig. 4. 
Figure 4(a) indicates that for Case S1 the mushy zone 
occupies approximately one-half of the cavity. By this 
time the flow is dominated by solutal buoyancy forces, 
the exceptions being a very small thermally driven cell 
in the lower right corner of the cavity and the corn- 
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Fig. 3. Isotherms and liquid concentration isopleths for Case S1 at 150 s, 250 s and 400 s. 

bined effects of buoyancy and contraction flow in the 
riser. Again, the upward flow in the mushy zone lifts 
the Sn-rich interdendritic liquid to the top of the cavity 
where, as shown in Figs. 3(e) and 4(d), it collects to 
form a thin layer. The liquidus temperature in this 
layer is depressed significantly by the high Sn con- 
centration so that the mushy zone is confined to a 
small region near the cooled wall. 

The velocity vectors and solid fraction isopleths for 
Case S I (Fig. 4(a)) indicate the formation of channels 
in the upper portion of the mushy zone that are pre- 
ferred paths for the upward flow of the Sn-rich inter- 

dendritic liquid. The presence of Sn-rich liquid in a 
channel (as indicated by Fig. 4(d)) lowers the liquidus 
temperature, and the advection of warm fluid into the 
region causes both remelting and the delayed for- 
mation of solid. In Fig. 4(a), it is also apparent that 
the flow in regions characterized by e~ < 30% 
(approximately the right one-half of the mushy zone) 
is much stronger than in regions where the solid frac- 
tion is larger. The explanation for this behavior is the 
jump between the analytical and experimental per- 
meability relations at el = 0.7 discussed in Section 2.2. 
Obviously, such a jump is not physically realistic (in 
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Fig. 4. Velocity field, solid fraction isopleths and macrosegregation for Cases S1, $2 and L1 at 250 s. 

comparison with a smooth transition) and illustrates 
the need for continued work to develop permeability 
relations valid for all values of the liquid fraction. 

Figures 4(b) and (e) show that, in comparison with 
Case S l, Case $2 predicts the formation of many short 
and more horizontally aligned channels. The isotropic 
permeability is much larger than the anisotropic per- 
meabilities at high liquid fractions (el > 0.95 in Fig. 
2), so the resistance to flow is smaller near the edge of 
the mushy zone in Case $2, and many channels begin 
to form. Because the isotropic permeability decreases 
more rapidly than the anisotropic permeabilities 
(0.7 < el < 0.95 in Fig. 2), the resistance to flow in 
Case $2 increases more rapidly leading to channels 
that are shorter. The relatively high permeabilities in 
Case S1 over a wide range of liquid fractions provide 
less resistance to upward, solutally driven flow, result- 
ing in longer, vertically oriented channels. Figure 4(b) 

also shows that, because there is not  a jump in the 
permeability in Case $2, there is a uniform variation 
in the velocities across the mushy zone. Finally, Fig. 
4(e) indicates that macrosegregation in Case $2 is 
slightly less severe than in Case S1. 

The predictions for Case S1 (Figs. 4(a) and (d)) 
and Case L1 (Figs. 4(c) and (f)) after 250 s of cooling 
are remarkably similar. This is somewhat surprising 
since Case S1 assumes that there is no solid solute 
diffusion microscopically in the solid while Case $2 
assumes that the solid is microscopically well mixed. 
The discussion in Section 4.5 will show that the pri- 
mary difference between the predictions of the two 
cases is in the amount  of eutectic formed. 

4.2. Intermediate stages of solidification 
After 400 s of cooling in Case S1, Fig. 5(a) shows 

that the mushy zone occupies about  three-quarters of 
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the cavity. By this time the flow is slow enough that, 
as seen in Fig. 3(c), energy transport through much 
of the mushy zone is nearly conduction dominated. 
Figure 5(b) indicates that a third segregated channel 
has begun to form in the upper right portion of the 
mushy zone. The Sn-rich liquid at the top of the cavity, 
shown in Figs. 3(I) and 5(b), has kept the liquidus 
temperature low enough that the mushy zone is still 
confined to a small region near the cooled wall. Were 
it not for the fact that much of the Sn-rich liquid has 
been transported to the riser (as shown in Fig. 5(b)), 
it is expected that the Sn-rich layer at the top of the 
cavity would be much thicker and more severely seg- 
regated. 

Figure 5(c) shows that after 800 s of cooling in Case 
S 1 the mushy zone occupies nearly all of the cavity 
(except for part of the thin Sn-rich layer at the top) 
and two-thirds of the riser. A small solutally driven 
convection cell is contained in the top one-third of the 
riser, while the flow through the cavity is of a much 
smaller magnitude and is towards the cooled wall and 
the top of the cavity. The macrosegregation plot in 
Fig. 5(d) clearly shows the segregation in the channels 
that have formed in the mushy zone, as well as the 
small Sn-rich layer that extends from the top of the 
cavity along the left and into the top of the riser 
and the large Sn-deficient region at the bottom of the 
cavity. 

4.3. Final stages of  solidification 
After about 1700 s of cooling for Case S 1, eutectic 

(both a- and 7-) solid begins to form along the cooled 
wall. Since by this time energy transport across the 
cavity is conduction dominated, the eutectic front (i.e. 
the eutectic isotherm) remains nearly straight and ver- 
tical as it moves across the cavity. Figure 6(a) shows 
that after 1800 s the eutectic front has progressed to 
approximately the midpoint of the cavity, and the rest 
of the domain is occupied by mush. This figure also 
shows that the flow is dominated by the solid/liquid 
density change on solidification. Figure 6(b) shows 
the flow field and eutectic front for Case $2 after 1800 
s of cooling, and comparing with Fig. 6(a) it is obvious 
that the behavior during the final stages of solidi- 
fication is similar for Cases S1 and $2. For  both cases 
solidification of the cavity was complete after 2050 s. 

The velocity field and the position of the solidus/ 
eutectic front for Case L1 after 2050 s of cooling in 
Fig. 6(c) indicates that the final stages of solidification 
for this case are quite different. Similar to Cases S1 
and $2, the first completely solid regions began to 
form after about 1700 s, but in Case L1 the solid was 
in the Sn-poor area at the bottom of the cavity (not 
at the cooled wall) and contained only or-phase (no 
eutectic) solid. In fact, no eutectic solid was formed 
until after 2000 s. Since much of the fully solid region 
in Fig. 6(c) contains no eutectic, at this time the 
boundary between the mushy and solid regions is not 
the eutectic isotherm. Note that the liquid level in the 
riser is higher in Fig. 6(c) than in Fig. 6(a) due to the 

use of different microsegregation models for Cases L 1 
and S1. The different average solid concentrations 
and eutectic solid fractions predicted when using the 
different microsegregation models affect the predicted 
solid densities which, in turn, lead to differences in 
the amount of liquid needed to feed the solidification 
shrinkage [14]. In Case L1, after about 2100 s the 
remaining liquid has a high enough concentration that 
eutectic solid forms from it, and the cavity completely 
solidifies after 2190 s. 

4.4. Final macrosegregation distributions 
Figure 7 shows the final macrosegregation patterns 

for all of the cases. It is interesting to first compare 
the macrosegregation plots for Case S1 after 800 s 
(Fig. 5(d)) and 2050 s (Fig. 7(a)). Close examination 
reveals that the size of all the Sn-deficient regions 
has decreased. The reason for these changes is the 
continuous drawing of Sn-rich liquid from the top of 
the cavity and the riser into the rest of the cavity by 
contraction-driven flow. 

Comparing the final macrosegregation plot for Case 
$2 (Fig. 7(b)) with that for Case S1 shows that, as 
before, the most obvious difference between the pre- 
dictions for these cases is in the number, length and 
orientation of the channels. Figure 7(c) shows that in 
Case $3 shrinkage-driven flow has transported solute 
from the Sn-deficient region in the riser and redis- 
tributed it throughout the cavity, where the com- 
position is slightly higher than the original. In com- 
parison with the cases that include buoyancy-driven 
flow, the magnitude of segregation for Case $3 is very 
small. A comparison of the plots in Figs. 7(a) and (d) 
shows that the final macrosegregation patterns for 
Cases S1 and L1 are again very similar. Closer exam- 
ination reveals that the extent of macrosegregation is 
slightly worse for Case LI. This is seen, for instance, 
in the size of the Sn-poor region at the bottom of the 
cavity and in the presence of a small Sn-rich region at 
the lower right wall. By comparison, Voller et al. [3] 
observed that segregation was more severe when there 
was assumed to be no microscopic solid solute 
diffusion (S 1) rather than complete microscopic solute 
diffusion (L 1) when simulating the solidification of an 
NH4C1-H20 solution. 

To further illustrate the differences in macro- 
segregation predicted by the different cases, Fig. 8 
shows the final macrosegregation profiles along the 
horizontal and vertical midsections of the cavity, with 
the behavior at the left wall and top of the cavity 
shown in more detail in Figs. 8(a) and (d) respectively. 
Figure 8(b) shows that, in general, the three cases that 
involve buoyancy flow predict similar macro- 
segregation distributions, and the variations in macro- 
segregation for these cases are much larger than those 
predicted for contraction-driven flow only ($3). 
Because of the small overall heat transfer coefficient 
used to cool the left wall [24], the inverse segregation 
predicted by Case $3 is barely visible. Case S1 shows 
the largest jump in the mixture concentration across 
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the cavity, while ,Case $2 shows many smaller vari- 
ations in the mixt,are concentration, all of which cor- 
respond to one of the channels seen in the macro- 
segregation plots. Case $2 also shows a much 
narrower band of positive segregation near the right 
wall and overall shows the least severe segregation. 
Finally, Fig. 8(b) indicates that Case L1 predicts 
slightly more sev,ere segregation (both positive and 
negative) than C~Lse SI, indicating that the extent of 
macrosegregation predicted by the limiting micro- 
segregation cases is slightly different. 

Examining Fig,;. 8(c) and (d) shows that the extent 
of macrosegregation along the vertical centerline of 
the cavity is near].y the same for the three cases with 
buoyancy flow, ard as expected, there is little variation 
in the profile for the contraction flow case. As in Fig. 
8(b), Case $2 shows many small variations in the 
mixture concentration corresponding to the many 
small channels predicted by this case, and Case L1 
shows the most severe negative segregation. Figure 
8(d) shows the extremely high positive segregation 
found at the top of the cavity for the cases with buoy- 
ancy driven flow. If some of the Sn-rich fluid had not 
been allowed to escape into the riser, one would expect 
that this layer would be much thicker and more 
severely segregated. 

A final examination of Fig. 8(a) shows that all of 
the cases predict: a narrow band of negative seg- 
regation very nea.r the cooled wall. Because this seg- 
regation is apparent for Case $3, the cause cannot 
be buoyancy driven flow. To further investigate the 
reason for this negative segregation, Fig. 9 shows 
macrosegregation profiles predicted by the present 
model when the same alloy is solidified unidi- 

rectionally, using the same initial and boundary con- 
ditions, and assuming that equation (2) holds. The 
curves in Fig. 9 correspond to three different cases: 
the full model with no buoyancy-driven flow ; the full 
model with no buoyancy-driven flow and no macro- 
scopic species diffusion in the liquid; and the full 
model with the solid and liquid densities equal, i.e. 
no buoyancy or contraction driven flow. Figure 9(b) 
shows that, as expected, the two cases that include 
contraction-driven flow predict the formation of a 
typicalposit ive inverse segregation pattern [14, 19-21, 
24] (due to the continual influx of higher con- 
centration liquid to compensate for solidification 
shrinkage), while the case with no flow shows a nearly 
uniform mixture concentration across most of the 
casting. Figure 9(a) indicates that, although there is 
no mixture concentration gradient at the impermeable 
wall, an extremely narrow negatively segregated band 
very near the chill is present when species diffusion in 
the liquid is included. Because of cooling at the chill, 
there is a positive temperature gradient in the melt, 
and because the temperature and liquid concentration 
are coupled through the liquidus line of the phase 
diagram, there is a corresponding negative con- 
centration gradient in the liquid, with the con- 
centration decreasing from a maximum at the wall 
(although there is no gradient at the impermeable 
wall) to the initial concentration far from the chill. 
(Note that Fig. 9 shows the mixture, not the liquid, 
concentration.) As the wall is impermeable, macro- 
scopic (but short range) solute diffusion due to this 
liquid concentration gradient causes the liquid near 
the chill to become depleted of solute (in comparison 
to a case with no macroscopic solute diffusion). Solid 
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Fig. 9. Macrosegregation profiles for unidirectional solidification with no buoyancy-driven flow : (a) near 

the chill and (b) throughout the casting. 

that forms from this liquid consequently has a lower 
composition, which leads to a lower mixture con- 
centration in a small band near the chill, as seen in 
Figs. 8(a) and 9(a). The width of the band is small 
due to the small macroscopic mass diffusivity in the 
liquid, i.e. the band would be wider and more severely 
segregated if the mass diffusivity were higher. 

4.5. Final eutectic fraction distributions 
Figure 10 contains shade plots that show the final 

eutectic volume fractions predicted for all of the cases. 
Comparing Figs. 10(a) through (c) with Figs. 7(a) 
through (c) shows that for Cases S1, $2 and $3 the 
final macrosegregation and eutectic fraction patterns 
are very similar, with more eutectic formed where 
positive segregation is largest, e.g. in the channels and 
at the top of the cavity in Case S 1. It is important to 
note that for Cases S1 and $2 there is no fully solid 
region that contains less than 5% eutectic by volume. 
Figure 10(d), however, shows that for Case LI a large 
portion of the solid in the cavity contains little or no 
eutectic, with eutectic found only in regions that are 
severely segregated. The Scheil and lever-rule models 
(along with properties for the Pb-Sn system) would 
predict eutectic volume fractions of about 25% and 
5% respectively. Since Cases S1 and L1 would reduce 
to those two models if macroscopic species transport 
was neglected, the differences between Figs. 10 (a) and 
(d) are not surprising. These results are also consistent 
with the observations of Felicelli et al. [5] for diffusion- 
dominated solidification. 

5. CONCLUSIONS 

The combined effects of microsegregation, mushy 
zone permeability and flow, caused by contraction 
and thermosolutal convection, on the prediction of 
macrosegregation and eutectic fraction during the 
solidification of a Pb-20 wt% Sn alloy have been 
evaluated. The results illustrate the coupled nature of 
these phenomena and indicate the sensitivity of model 
predictions to some assumptions often used in deriv- 
ing macroscopic solidification models. 

For  the situation considered here, predicted macro- 
segregation patterns for two limiting cases of micro- 
segregation (either complete or no microscopic solid 
solute diffusion) were similar, with only slightly more 
severe segregation predicted with complete solute 
diffusion (lever-rule type model). However, the Scheil 
type microsegregation model (no microscopic solid 
solute diffusion) predicted the formation of a sig- 
nificant eutectic fraction throughout the casting, while 
the lever-rule type model predicted the formation of 
a small amount of eutectic only in regions of severe 
positive segregation. Macrosegregation resulting from 
contraction-driven flow (caused by solid/liquid den- 
sity differences as well as density variations with both 
temperature and concentration) was overwhelmed by 
that caused by thermosolutal convection (because of 
the low cooling rate used here [24]). However, differ- 
ences in the predicted average solid concentrations 
and eutectic fractions when using the two limiting 
cases of solid microsegregation led to differences in 
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the predicted solid density distributions. This, in turn, 
affected the prediction of  contraction-driven flow. 
These results indicate that if  one is solely interested in 
macrosegregation due to buoyancy driven flow, it may 
not be necessary to use more complicated micro- 
segregation models (e.g. including finite rate solute 
diffusion in the solid microscopically or more carefully 
incorporating coarsening effects). However,  if  one is 
interested in predicting eutectic distributions and/or  if  
contraction-driven flow is significant, a more accurate 
microsegregation model  is probably necessary. Care- 
ful comparison of  predicted and measured macro- 
segregation and eutectic fraction distributions for a 
wide range of  cooling rates is clearly necessary to 
both validate the model  predictions and to determine 
whether using limiting cases of  microsegregation is 
sufficient. 

Using two different permeability functions avail- 
able in the literature, it was determined that when the 
mushy zone permeability is relatively high for large 
liquid fractions, the resulting predictions show long, 
more vertically oriented channels. For  lower per- 
meabilities, shorter and more horizontally oriented 
channels were predicted. Since the uncertainty in 
experimentally measured permeabilities is large, and 
especially since no experimental measurements have 
been made for high liquid fractions, these results show 
a definite need for further investigation into the per- 
meability of  mushy zones. The present results suggest 
that information on the mushy zone permeability 
could be worked out from solidification experiments 
by measuring the length and orientation of  the chan- 
nels in a solidified sample, and using model  predictions 
to determine what type of  permeability (e.g. degree of  
anisotropy, relative magnitude, etc.) is necessary to 
predict similar channels. It should also be noted that 
the present results are limited to two dimensions, while 
the formation of  channels is inherently a three-dimen- 
sional phenomena [37]. That  is, three-dimensional 
simulations may be necessary to predict accurately the 
formation of  what are, in reality, rod-like channels in 
the mushy zone. 
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